当前位置:首页 > 教学资料 > 说课稿

分数的基本性质说课稿

时间:2024-07-29 10:42:50
分数的基本性质说课稿3篇

分数的基本性质说课稿3篇

作为一位杰出的老师,很有必要精心设计一份说课稿,借助说课稿可以更好地组织教学活动。那么说课稿应该怎么写才合适呢?以下是小编为大家整理的分数的基本性质说课稿3篇,希望能够帮助到大家。

分数的基本性质说课稿 篇1

一、说教学理念

1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

二、说教材

1、教学内容

《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

2、学情分析

学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

3、教学目标:

(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。

三、说教法

“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

1、实际操作法

指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

2、直观演示法

先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

3、启发式教学法

运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

四、说学法

1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

五、说教学过程

(一)、新知铺垫

(二)、新知导入

(三)、新知探究

(四)、新知探究

(五)、新知训练

(六)、新知应用

(七)、新知强化

(八)、新知小结

1、新知铺垫和导入

上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。

(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。

2、新知探究

(1)、动手操作、形象感知

首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。

(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

(2)、观察比较,探究规律

首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。

(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。

3、新知训练

在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。

分数的基本性质说课稿 篇2

一、教材分析

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。

探索分数的基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。根据我对教材的认识,本课时安排了学习活动和游戏活动让学生寻找相等的分数,使学生初步体验分数的大小相等关系,为观察、发现分数的基本性质提供丰富的学习材料。然后引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流讨论,在 ……此处隐藏1448个字……”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:

1、实际操作法

指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的'理解,促使学生的感性认识逐步理性化。

2、直观演示法

先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

3、启发式教学法

运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

四、说学法

1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

五、说教学过程

1、复习提问,旧知铺垫

新课开始,我先板书了一个除法算式 1÷2,然后让学生不计算,说出一个除法算式和它的商相等,学生边说我边抽取两个算式板书,比如2÷4,4÷8 ,3÷ 6等。然后让学生说说是根据什么想到这些算式的(商不变的规律),商不变的规律的内容又是什么。

第二步,我让学生根据分数与除法的关系,把这三个算式写成分数形式,根据三个算式商相等,推导出这三个分数的大小。也就是1/2=2/4=4/8。此时,引导学生:在除法中有商不变的性质,那么分数中又有什么规律呢?今天我们就共同来探讨分数当中的这个问题。这样设计的目的就是让学生通过观察算式和分数的特点,培养学生直觉观察能力,激发学生利用旧知识商不变的规律,探求新知识的兴趣,同时也使学生明确要解决的问题。

2、动手操作,初步感知

首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。再观察涂色部分,说说发现了什么?在学生汇报时,说出发现:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:把一张纸条平均分成2份,涂其中1份,得到1/2;把一张纸条平均分成4份,涂其中2份,得到2/4;把一张纸条平均分成8份,涂其中4份,得到4/8;通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。这一过程的设置,主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

3、设疑促思,探究新知

“疑是思之始,学之端”。在教师板书1/2=2/4=4/8后,进一步引导学生观察这三个分数,它们的分子分母都不相同,但是分数的大小却相等,提出疑问:这里面隐藏着什么秘密,有什么规律?接着将发言权充分交给学生,完全开放空间,激发学生思索,并畅所欲言,说出自己发现的规律,(比如:将1/2的分子分母同时乘2得到2/4,将2/4的分子分母同时乘2得到4/8,将1/2的分子分母同时乘4得到4/8;将4/8的分子分母同时除以2得到2/4,将2/4的分子分母同时除以2得到1/2,将4/8的分子分母同时除以4得到1/2共6种)。

在学生自主探究的基础上,逐步完善学生的说法,适时引导学生将发现的规律总结成一句话:分数的分子分母同时乘或者除以相同的数,分数的大小不变。

如果学生在此说出了0除外更好,如果没有,在此基础上,提出疑问:“同时”表示什么意思?这个相同的数是任何数都行吗?为什么?那么同学们总结的规律该怎样叙述更完整呢?在学生加上“0除外”完整叙述后,指出:分数的这种变化规律就是我们今天学习的“分数的基本性质”,并借此板书课题“分数的基本性质”。

这样设计的目的就是培养学生发现问题,自主探究问题的能力,也培养学生的语言表达能力,抽象概括能力和初步的逻辑思维能力。

另外,我还安排了“听一听”,让学生听5句话并判断对错。

第一句:分数的分子分母同时乘相同的数(0除外),分数的大小不变。

第二句:分数的分子分母同时除以相同的数(0除外),分数的大小不变。

第三句:分数的分子分母同时加上相同的数(0除外),分数的大小不变。

第四句:分数的分子分母同时减去相同的数(0除外),分数的大小不变。

第五句:分数的分子分母同时乘或者除以相同的数(0除外),分数的大小不变。

除了进行“听一听”的练习,还有习题的判断。这样一次次地加深,强化学生对分数的基本性质的理解,反复锤炼学生,达到对知识的更深刻的掌握,也为后面例题的完成奠定厚实的基础。

4、初步应用,深化新知

学习分数的基本性质,就是为了在生活中运用它。给你一个分数,能把它化成分母不同而大小相同的分数吗?借此引出例2。让学生读题,并明白做题要求有两个:一是分数大小不变,二是分母相同。在引导学生完成第一个分数后,第二个分数让学生独立完成在书上,然后全班学生交流自己的过程及结果。但是一个例2不足以让学生达到巩固的目的,所以再次安排了和例2题型完全一样的“做一做”,让学生独立思考,写在练习本上,并抽两名学生板演,对出现的问题共同指正。这样的安排是为了把“分数的基本性质”及时练习,反复应用,对学生巩固新知、利用新知都达到好的效果。

5、多样练习,巩固知识

在初步应用“分数的基本性质”后,我安排了四个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=( )/( )的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

6 、全课小结,整理知识

让学生回顾本节课,说一说自己的收获,培养学生的知识概括能力。同时,教师也在此时进行总结:分数的基本性质和商不变的性质只是在说法上不同,在实质上是相同的,所谓“万变不离其宗”正是如此。通过利用“分数的基本性质”填空,写出许许多多分子分母不同但分数大小相等的分数,体会“以不变应万变”的数学学习方法。最后告诉学生一个小秘密,以后还将学习比的基本性质,它是在“分数的基本性质”的基础上学习的,这也是“用数学学数学”的学习方法。这样安排会更加激发学生学习数学的兴趣,以及探究数学问题的方法。

最后,我想说,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

《分数的基本性质说课稿3篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式